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Agenda

* Introduction to DFSS, Robust Design, PIDO
- Example 1: HEV Battery
Example 2: BIW Door assembly

Example 3: Turbine - Integration into Product
Development

Workflow
Recommendations
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Contradicting Design Requirements

The need for innovative tools is apparent now
more than ever as more complex design
requirements are surfacing such as:

Cost
Performance & safety
Quality

Time to market & short life
cycle

Environmental impacts
Aesthetics
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Statistical Design Performance Simulation?

“ You ‘ve got to be passionate lunatics about the
Jack Welch
“U.S. autos fight reputation ...”

Joe Miller / The Detroit News

“ Product quality requires managerial, technological and
statistical concepts throughout all the major functions of the
organization ..."

Josheph M. Juran

Variation (thickness, properties, surface finish,
loads, processes etc.) is ...

DOE, Design for Six Sigma (DFSS), Statistical FEA,
Behavioral Modeling is ... THE DEFENCE
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Design Optimization -DFSS - PIDO
“For the goal is not the last, but the best"
Aristotle (384-322 BCE)

Design Optimization is the selection of the
best alternative within the available means

Design Optimization can be addressed with:
Knowledge, Tradition and Experience
Numerical Optimization Methods
Design Space exploration Methods

DFSS is set of tools and methods for Analyzing, Allocating,
and Optimizing Variability
PIDO Process Integration & Design Optimization
Processes Automation ->
Design Exploration ->
Design Optimization - >
Robust Design
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Quality - Robust Design o\

Variation exists in all systems, subsystems, =
components and processes

“eub

Definition of Robust Design: ‘ [ |
Deliver customer expectations at
profitable cost regardless of:
- customer usage

variation in manufacturing

variation in supplier

variation in distribution, delivery & installation

degradation over product life

Goals of Robust Design (shrink and shift)
- Shift performance mean to the target value
- Shrink product’s performance variability

B 0pT) 2005

Improved Quality and Reduced Total Cost

‘Lost Customers
-Liability (R&D )
*Recalls (production)

‘Rework

¢ Defect Level
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Noise & Control Parameters

* Noise parameters:
Factors that are beyond the control of the designer
- material property variability '
- manufacturing process limitations
Environment: femperature & humidity
- component degradation with time

* Control Parameters:
Factors that the designer can control
- geometric design variables
material selections
design configurations
- manufacturing process settings
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Tools for Robust Design

- Design Of Experiments

- Exploits nonlinearities and interactions
between noise & control parameters to
reduce product performance variability

- full factorial, fractional factorial, Monte-
Carlo, LHC
- Response Surface Methods
- Central Composite Design
- Box-Behnken Design
+ 6-sigma design
- Identifying & qualifying causes of variation

- Centering performance on specification
target

- Achieving Six Sigma level robustness on the
key product performance characteristics
with respect to the quantified variation
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Statistical Design Performance Simulation ii

Simulation of input
parameters (material,

Statistical analysis of
ickness, spot welds, ...) Y

output parameters
stress, fatigue life, ...)

O.
Monte Carlo
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Example # 1

Applying Six Sigma Design Process to HEV Battery
Thermal Management
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HEV Battery Pack
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Outputs / Goals B [ I -'

Outputs - variation
- max tfemperature
- differential femperature
- pressure drop

Six output parameters:
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Design Space with ¢ Quality Regions T, ..

Design Space with Sigma Quality Regions for maxT
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Design Space with 6 Quality Regions dP

-
[§]

=
=

? U Air Flow Rate (S¢fm)

L T

LS,
o2

0.8

1 T 1.4 1.6 1.8 2 ] 2.4

%& Hair Gap Between Cells (Mmm)

Design Space with 6 Quality Regions All

Design Space with Sigma Quality Regions All Criteria
1.5 2 z 2 : 2
1.8
1.4
1.6
1:3
1.4
E
.;.1'2 1.2
£ ]
=
= it
o211
w
= L 0.8
=
1
0.6
0.8 0.4
0.2
0.8
| | | | | r 0
1 1.2 1.4 1.6 18 2 22 2.4 : 3
% HAir Gap Between Cells (mm)

11



Example # 2

Effect of thickness and material variation on six-sigma
performance targets of a door assembly
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Oil-Canning Deflection Distribution
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0.025
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Door Sag Deflection Response Attribute # 1

0.035

USL

0.03

0.025

o
o
o

Histogram
=]
=
w

0.01

0.005

0.5 06 0.7 0.8 0.9 1
Door Sag Deflection (mm)

May 2005

Oil-Canning Deflection Response Attribute # 2
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Assembly Weight Response Attribute # 3
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Sensitivity of Design Variables on Door Sag Deflection

Sensitivity of Design Variables on
Door Sag Deflection
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CAD FEM Post Integration
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CAD FEM Post Integration

Results for Maximum Principal Stress Design Variables and
Pressure Side Suction Side Uncertainties

Maximum Principal Stress
X168 Fa

255 Tan
| | 2 og

(L

May 2005




Enabling Parameterization with Workbench

(Y ANSYS Workbench [ANSYS Multiphysics]
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Deterministic Optimization for Fatigue Life

Initial Design:
Fatigue Life
1,637 Cycles
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Optimization for Quality with Probabilistic Constraint:
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Seven Habits of Highly Effective Design Process

1. Clarify and document the desired design decision process

. Create a design environment tailored to the desired
design process with workflow management

. Develop a repository of design & manufacturing rules to
govern the design process

. Simplify and automate tool usage for standard analyses

. Automate and simplify data integration (get the right
data the first time)

. Augment the experts by automating large portions of the
design process (Workbench wizards)

. PIDO ( DesignXplorer, Noesis, VisualDOC, iSIGHT, mode
Frontier, hyperStudy, model center, RDCS, BMX, ..)
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Recommendations for DFSS Implementation
* Make the cost of poor quality part of the design

N‘ equation

J *Cost = C Product Development +C Warranty *

¢ Liability +C Recalls * c Lost Customers *

C Rework t -

* CAE analyses should include a robustness
assessment for known sources of variation

* Place the power of DFSS in the hands of every
designing engineer not just those with advanced
engineering degrees

« Automate - Incorporate DFSS into your design
process

May 2005
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